

A Natural History and Copula Based Joint Model for Regional and Distant Breast Cancer Metastasis

Alessandro Gasparini · alessandro.gasparini@ki.se · @ellessenne 43rd Annual Conference of the International Society for Clinical Biostatistics

Breast cancer is when abnormal cells in the breast begin to grow and divide in an uncontrolled way to eventually form a tumour.

Breast Cancer

Breast cancer is when abnormal cells in the breast begin to grow and divide in an uncontrolled way to eventually form a tumour.

- It is the most common cancer in the UK, and the most common cancer among women worldwide.
- Every year, around 11,500 breast cancer deaths in the UK (2017–2019) and 1,500 in Sweden (2020).

Motivation

To fully understand the prognosis of breast cancer, we need information on regional and distant metastasis.

Motivation

To fully understand the prognosis of breast cancer, we need information on regional and distant metastasis. Past work focussed on regional or distant metastasis alone.

Motivation

To fully understand the prognosis of breast cancer, we need information on regional and distant metastasis. Past work focussed on regional or distant metastasis alone. We want to develop a joint model for the two combined.

This is joint work with Prof. Keith Humphreys at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet.

Time to Metastasis and Affected Lymph Nodes are Correlated

Crude data from the CAHRES study.

Modelling Tumour Growth

Exponential growth of the tumour:

 $V(t|r) = V_{\rm Cell} \exp(t/r)$

Modelling Tumour Growth

Exponential growth of the tumour:

$$V(t|r) = V_{\rm Cell} \exp(t/r)$$

A random effect on r to allow for heterogeneity:

$$f_R(r) = \frac{\tau_2^{\tau_1}}{\Gamma(\tau_1)} r^{\tau_1 - 1} \exp(-\tau_2 r), \ r \ge 0,$$

Modelling Tumour Growth

Exponential growth of the tumour:

$$V(t|r) = V_{\rm Cell} \exp(t/r)$$

A random effect on r to allow for heterogeneity:

$$f_R(r) = \frac{\tau_2^{\tau_1}}{\Gamma(\tau_1)} r^{\tau_1-1} \exp(-\tau_2 r), \ r \ge 0,$$

Finally, in the absence of screening, we assume the following hazard function for time to symptomatic detection:

$$h_{T_{\text{det}}}(t) = \eta V(t, r), \ t \ge t_0 \tag{4 of 23}$$

Modelling Spread to the Lymph Nodes

This is based on previous work by Isheden *et al.*

The model for spread to the lymph nodes (seeding) is based on a non-homogeneous Poisson Process with intensity function

 $\lambda(t,r,s^*)=s^*D(t,r)^{k_N}D'(t,r),$

where D(t,r) is the number of times the cells in the tumour have divided and D'(t,r) is the rate of cell division in the tumour.

Modelling Spread to the Lymph Nodes

This is based on previous work by Isheden *et al.*

The model for spread to the lymph nodes (seeding) is based on a non-homogeneous Poisson Process with intensity function

 $\lambda(t,r,s^*)=s^*D(t,r)^{k_N}D'(t,r),$

where D(t,r) is the number of times the cells in the tumour have divided and D'(t,r) is the rate of cell division in the tumour.

Assuming a Gamma (γ_1, γ_2) random effect on spread rate, Isheden *et al.* showed that the probability of N = n clinically detectable lymph nodes is independent of R (given tumour volume V).

Modelling Spread to the Lymph Nodes

This is based on previous work by Isheden *et al.*

The model for spread to the lymph nodes (seeding) is based on a non-homogeneous Poisson Process with intensity function

 $\lambda(t,r,s^*)=s^*D(t,r)^{k_N}D'(t,r),$

where D(t,r) is the number of times the cells in the tumour have divided and D'(t,r) is the rate of cell division in the tumour.

Assuming a Gamma (γ_1, γ_2) random effect on spread rate, Isheden *et al.* showed that the probability of N = n clinically detectable lymph nodes is independent of R (given tumour volume V).

This leads to a *negative binomial* distribution for the number of affected lymph nodes at diagnosis.

Modelling Distant Metastatic Spread (1)

The model for time to distant metastatic spread is based on a similar non-homogeneous Poisson process (with distinct parameters), including between-subject heterogeneity for the distant metastatic spread parameter.

Modelling Distant Metastatic Spread (1)

The model for time to distant metastatic spread is based on a similar non-homogeneous Poisson process (with distinct parameters), including between-subject heterogeneity for the distant metastatic spread parameter.

Some key model assumptions:

- Metastatic seeding completely stops at diagnosis of the primary;
- Already seeded, successful colonies are not affected by surgery following diagnosis/treatment;
- Times from seeding to detection are the individual specific times t_0 .

Modelling Distant Metastatic Spread (2)

Modelling Distant Metastatic Spread (3)

We can derive the following density and survival functions for time to detection of distant metastasis:

$$f_{W|V=v,R=r}(w) = \frac{k_W + 1}{r} \left(\frac{w}{r} + \log\frac{v}{V_0}\right)^{k_W} \frac{\omega_1 \omega_2^{\omega_1}}{\left[\omega_2 + \left(\frac{w}{r} + \log\frac{v}{V_0}\right)^{k_W + 1}\right]^{\omega_1 + 1}},$$

 $\text{for all } 0 \leq w \leq r \log(V_0/V_{\text{Cell}}).$

$$S_{W|V=v,R=r}(w) = \begin{cases} \left\{ \omega_2 / \left[\omega_2 + \left(\frac{w}{r} + \log \frac{v}{V_0} \right)^{k_W + 1} \right] \right\}^{\omega_1} & \text{if } 0 \le w \le r \log(V_0 / V_{\text{Cell}}) \\ \left\{ \omega_2 / \left[\omega_2 + \left(\log \frac{v}{V_{\text{Cell}}} \right)^{k_W + 1} \right] \right\}^{\omega_1} & \text{if } w > r \log(V_0 / V_{\text{Cell}}) \end{cases}$$

Joint Modelling

First, we need to define the joint distribution of the number of affected lymph nodes N = n and the time to first detected distant metastasis W = w, given tumour size at detection V = v and inverse growth rate R = r:

 $f_{N,W|V=v,R=r}(n,w)$

There are several ways to connect the two processes. Here, we take a copula modelling approach:

- \cdot We have already specified the marginal distributions of N and W,
- It is reasonable in the absence of a clear underlying biological model.

Copula

A copula is defined as a multivariate cumulative distribution function (CDF) for which the marginal probability distributions are uniform on the interval [0, 1].

Formally, if F is a bivariate CDF with univariate CDF margins F_1, F_2 then, according to Sklar's theorem, for every bivariate distribution there exists a copula representation such that

$$F(x_1,x_2|\theta)=C(F_1(x_1),F_2(x_2);\theta)$$

for a certain parameter (or vector of parameters) θ .

Joint Copula Modelling

Let C be a bivariate copula and $F_{N|V=v,R=r}(n)$ and $F_{W|V=v,R=r}(w)$ be the cumulative distribution functions of affected lymph nodes at detection and time to distant metastasis, respectively.

The joint bivariate cumulative distribution can therefore be defined using the copula C as

$$F_{N,W|V=v,R=r}(n,w)=C(F_{N|V=v,R=r}(n),F_{W|V=v,R=r}(w))$$

The joint bivariate density function follows from the CDF ${\cal F}_{N,W|V=v,R=r}(n,w)$ above.

Joint Copula Modelling

Let C be a bivariate copula and $F_{N|V=v,R=r}(n)$ and $F_{W|V=v,R=r}(w)$ be the cumulative distribution functions of affected lymph nodes at detection and time to distant metastasis, respectively.

The joint bivariate cumulative distribution can therefore be defined using the copula C as

$$F_{N,W|V=v,R=r}(n,w)=C(F_{N|V=v,R=r}(n),F_{W|V=v,R=r}(w))$$

The joint bivariate density function follows from the CDF ${\cal F}_{N,W|V=v,R=r}(n,w)$ above.

For possible copula formulations, we focus on Achimedean copulae (such as Frank, Joe, Clayton, etc.) for simplicity.

Likelihood Function

In the absence of screening:

$$L^{\text{No Screening}} = f_{V_{\text{det}}}(v) \int_{R} P(N=n, W=w | V_{\text{det}}=v, R=r) f_{R|V_{\text{det}}=v}(r) \; dr$$

Likelihood Function

In the absence of screening:

$$L^{\rm No \; Screening} = f_{V_{\rm det}}(v) \int_R P(N=n,W=w|V_{\rm det}=v,R=r) f_{R|V_{\rm det}=v}(r) \; dr$$

For a screened population:

$$L^{\text{Screen Detection}} \propto P(B_0|V=v) P(V=v, N=n, W=w|A) P(B^c|A, V=v, N=n, W=w)$$

 $L^{\rm Symptomatic \ Detection} \propto P(V_{\rm det} = v, N = n, W = w | A) P(B^c | A, V_{\rm det} = v, N = n, W = w)$

After fitting the joint copula model we can obtain a variety of predictions. Among others:

• Probability of having detected distant metastases at diagnosis of the primary tumour given size of the tumour and number of affected lymph nodes;

After fitting the joint copula model we can obtain a variety of predictions. Among others:

- Probability of having detected distant metastases at diagnosis of the primary tumour given size of the tumour and number of affected lymph nodes;
- Probability of having latent/undiagnosed distant metastases given size of the tumour and number of affected lymph nodes at diagnosis of the primary tumour;

After fitting the joint copula model we can obtain a variety of predictions. Among others:

- Probability of having detected distant metastases at diagnosis of the primary tumour given size of the tumour and number of affected lymph nodes;
- Probability of having latent/undiagnosed distant metastases given size of the tumour and number of affected lymph nodes at diagnosis of the primary tumour;
- Survival probability at any time $w^* > 0$ for the event of distant metastasis, conditional on characteristics observed at diagnosis and on being free of distant metastasis at that time;

After fitting the joint copula model we can obtain a variety of predictions. Among others:

- Probability of having detected distant metastases at diagnosis of the primary tumour given size of the tumour and number of affected lymph nodes;
- Probability of having latent/undiagnosed distant metastases given size of the tumour and number of affected lymph nodes at diagnosis of the primary tumour;
- Survival probability at any time $w^* > 0$ for the event of distant metastasis, conditional on characteristics observed at diagnosis and on being free of distant metastasis at that time;
- More *standard* quantities such as tumour doubling time, etc.

Application: Data

We analyse data from CAHRES, which consists of incident cases of postmenopausal breast cancer recorded in a case-control setting:

- Women born and residing in Sweden,
- Aged 50 74,
- Diagnosed with an incident primary invasive breast cancer between October 1st 1993 and March 31st 1995.

Furthermore,

- This was linked to data from the Swedish Cancer Registry and the Stockholm-Gotland Breast Cancer Registry, and
- An extension of the original study collected mammographic images and screening histories from screening units and radiology departments.

Application: Some Statistics

- 1581 women, of which:
 - 1019 (64.4%) detected through screening
 - 562 (35.6%) detected symptomatically
- Median tumour diameter at detection of 15 mm (I.Q.I. 10 22 mm);
- 1091 women (69.0%) had no affected lymph nodes at detection, 170 (10.8%) had one, 91 (5.8%) had two, 229 women (14.4%) had three or more;
- One woman had detected distant metastasis at the time of diagnosis of the primary tumour. During follow-up, 288 more women (18.2%) were diagnosed with distant metastasis;
- Median follow-up time was 5.50 years (95% C.I.: 5.41 5.59 years);
- Kendall's τ correlation between the lymph nodes and the times to distant metastasis was -0.15 (if discretising time: -0.17).

Application: Choice of the Copula Function

	Frank	Clayton	АМН	Independence
Log-likelihood	-6,380.3	-6,417.6	-6,394.9	-6,443.4
AIC	12,780.6	12,855.1	12,809.8	12,904.9
Kendall's $ au$	-0.333 (-0.374 to -0.293)	-0.091	-0.179 (-0.183 to -0.176)	_

Application: Comparing Copulae

■ AMH ▲ Clayton ● Frank * Independence

Application: Time to Distant Metastasis Predictions

18 of 23

Application: Cured Fraction

- Marginally over the overall observed covariates distribution: 0.697 (95% C.I.: 0.658 to 0.736)
- Marginally over number of affected lymph nodes:
 - Zero lymph nodes: 0.805 (0.772 to 0.839)
 - One lymph node: 0.553 (0.500 to 0.605)
 - Two lymph nodes: 0.479 (0.423 to 0.535)

This estimate is similar to that reported by Dal Maso et al. from the EUROCARE-5 study: 0.66 for breast cancers diagnosed in 2000.

Application: Microsimulation

Finally, we use the joint copula model to showcase its potential for microsimulation purposes, as it can connect the latent natural history of a tumour with the risk of future events.

For this purpose, we simulate 10 million tumours from the best fitting model (i.e., assuming a Frank copula) and we assess *what the 5-years risk of distant metastasis would be* in the counterfactual scenario of early detection.

Application: Microsimulation

Finally, we use the joint copula model to showcase its potential for microsimulation purposes, as it can connect the latent natural history of a tumour with the risk of future events.

For this purpose, we simulate 10 million tumours from the best fitting model (i.e., assuming a Frank copula) and we assess *what the 5-years risk of distant metastasis would be* in the counterfactual scenario of early detection.

This quantity is likely affected by lead-time bias, but given that we know the counterfactuals, we can provide a *lead-time corrected estimate* as well.

Application: Early Detection

· ● · Naïve · ▲ · Lead-Time Corrected

Application: Detecting Smaller Cancers

· ● · Naïve · ▲ · Lead-Time Corrected

1. We have introduced a joint, copula-based model for the latent growth of breast cancer, detection, spread to the lymph nodes, and distant metastatic spread.

- 1. We have introduced a joint, copula-based model for the latent growth of breast cancer, detection, spread to the lymph nodes, and distant metastatic spread.
- 2. We have shown that this model was able to capture relevant patterns in data.

- 1. We have introduced a joint, copula-based model for the latent growth of breast cancer, detection, spread to the lymph nodes, and distant metastatic spread.
- 2. We have shown that this model was able to capture relevant patterns in data.
- 3. We have demonstrated how a model of this kind could be used in microsimulation studies of breast cancer.

- 1. We have introduced a joint, copula-based model for the latent growth of breast cancer, detection, spread to the lymph nodes, and distant metastatic spread.
- 2. We have shown that this model was able to capture relevant patterns in data.
- 3. We have demonstrated how a model of this kind could be used in microsimulation studies of breast cancer.
- 4. The copula joint model is of course not perfect, but it provides solid building blocks on which we can develop and extend upon, e.g., by directly modelling cancer-specific death within a unified framework.

- 1. We have introduced a joint, copula-based model for the latent growth of breast cancer, detection, spread to the lymph nodes, and distant metastatic spread.
- 2. We have shown that this model was able to capture relevant patterns in data.
- 3. We have demonstrated how a model of this kind could be used in microsimulation studies of breast cancer.
- 4. The copula joint model is of course not perfect, but it provides solid building blocks on which we can develop and extend upon, e.g., by directly modelling cancer-specific death within a unified framework.

Thank you for listening!