
A Natural History and Copula Based Joint Model
for Regional and Distant Breast Cancer Metastasis
Alessandro Gasparini ⋅ alessandro.gasparini@ki.se ⋅ @ellessenne
43rd Annual Conference of the International Society for Clinical Biostatistics

mailto:alessandro.gasparini@ki.se
https://twitter.com/ellessenne


Breast Cancer

Breast cancer is when abnormal cells in the breast begin to grow
and divide in an uncontrolled way to eventually form a tumour.

• It is the most common cancer in the UK, and the most common cancer
among women worldwide.

• Every year, around 11,500 breast cancer deaths in the UK (2017–2019) and
1,500 in Sweden (2020).
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Motivation

To fully understand the prognosis of breast cancer, we need
information on regional and distant metastasis.

Past work focussed on regional or distant metastasis alone.
We want to develop a joint model for the two combined.

This is joint work with Prof. Keith Humphreys at the Department of Medical
Epidemiology and Biostatistics, Karolinska Institutet.
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Time to Metastasis and Affected Lymph Nodes are Correlated
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Modelling Tumour Growth
Exponential growth of the tumour:

𝑉 (𝑡|𝑟) = 𝑉Cell exp(𝑡/𝑟)

A random effect on 𝑟 to allow for heterogeneity:

𝑓𝑅(𝑟) = 𝜏𝜏1
2

Γ(𝜏1)𝑟𝜏1−1 exp(−𝜏2𝑟), 𝑟 ≥ 0,

Finally, in the absence of screening, we assume the following hazard function for
time to symptomatic detection:

ℎ𝑇det
(𝑡) = 𝜂𝑉 (𝑡, 𝑟), 𝑡 ≥ 𝑡0
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Modelling Spread to the Lymph Nodes
This is based on previous work by Isheden et al.

The model for spread to the lymph nodes (seeding) is based on a
non-homogeneous Poisson Process with intensity function

𝜆(𝑡, 𝑟, 𝑠∗) = 𝑠∗𝐷(𝑡, 𝑟)𝑘𝑁 𝐷′(𝑡, 𝑟),
where 𝐷(𝑡, 𝑟) is the number of times the cells in the tumour have divided and
𝐷′(𝑡, 𝑟) is the rate of cell division in the tumour.

Assuming a Gamma(𝛾1, 𝛾2) random effect on spread rate, Isheden et al. showed
that the probability of 𝑁 = 𝑛 clinically detectable lymph nodes is independent of
𝑅 (given tumour volume 𝑉 ).
This leads to a negative binomial distribution for the number of affected lymph
nodes at diagnosis.
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Modelling Distant Metastatic Spread (1)

The model for time to distant metastatic spread is based on a similar
non-homogeneous Poisson process (with distinct parameters), including
between-subject heterogeneity for the distant metastatic spread parameter.

Some key model assumptions:

• Metastatic seeding completely stops at diagnosis of the primary;

• Already seeded, successful colonies are not affected by surgery following
diagnosis/treatment;

• Times from seeding to detection are the individual specific times 𝑡0.
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Modelling Distant Metastatic Spread (2)
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Modelling Distant Metastatic Spread (3)
We can derive the following density and survival functions for time to detection
of distant metastasis:

𝑓𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤) = 𝑘𝑊 + 1
𝑟 (𝑤

𝑟 + log 𝑣
𝑉0

)
𝑘𝑊 𝜔1𝜔2

𝜔1

[𝜔2 + (𝑤
𝑟 + log 𝑣

𝑉0
)𝑘𝑊 +1]

𝜔1+1 ,

for all 0 ≤ 𝑤 ≤ 𝑟 log(𝑉0/𝑉Cell).

𝑆𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤) =
⎧{
⎨{⎩

{𝜔2/ [𝜔2 + (𝑤
𝑟 + log 𝑣

𝑉0
)𝑘𝑊 +1]}

𝜔1
if 0 ≤ 𝑤 ≤ 𝑟 log(𝑉0/𝑉Cell)

{𝜔2/ [𝜔2 + (log 𝑣
𝑉Cell

)𝑘𝑊 +1]}
𝜔1

if 𝑤 > 𝑟 log(𝑉0/𝑉Cell)
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Joint Modelling
First, we need to define the joint distribution of the number of affected lymph
nodes 𝑁 = 𝑛 and the time to first detected distant metastasis 𝑊 = 𝑤, given
tumour size at detection 𝑉 = 𝑣 and inverse growth rate 𝑅 = 𝑟:

𝑓𝑁,𝑊|𝑉 =𝑣,𝑅=𝑟(𝑛, 𝑤)

There are several ways to connect the two processes. Here, we take a copula
modelling approach:

• We have already specified the marginal distributions of 𝑁 and 𝑊 ,

• It is reasonable in the absence of a clear underlying biological model.
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Copula

A copula is defined as a multivariate cumulative distribution function (CDF) for
which the marginal probability distributions are uniform on the interval [0, 1].
Formally, if 𝐹 is a bivariate CDF with univariate CDF margins 𝐹1, 𝐹2 then,
according to Sklar’s theorem, for every bivariate distribution there exists a copula
representation such that

𝐹(𝑥1, 𝑥2|𝜃) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2); 𝜃)

for a certain parameter (or vector of parameters) 𝜃.
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Joint Copula Modelling
Let 𝐶 be a bivariate copula and 𝐹𝑁|𝑉 =𝑣,𝑅=𝑟(𝑛) and 𝐹𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤) be the
cumulative distribution functions of affected lymph nodes at detection and time
to distant metastasis, respectively.

The joint bivariate cumulative distribution can therefore be defined using the
copula 𝐶 as

𝐹𝑁,𝑊|𝑉 =𝑣,𝑅=𝑟(𝑛, 𝑤) = 𝐶(𝐹𝑁|𝑉 =𝑣,𝑅=𝑟(𝑛), 𝐹𝑊|𝑉 =𝑣,𝑅=𝑟(𝑤))

The joint bivariate density function follows from the CDF 𝐹𝑁,𝑊|𝑉 =𝑣,𝑅=𝑟(𝑛, 𝑤)
above.

For possible copula formulations, we focus on Achimedean copulae (such as
Frank, Joe, Clayton, etc.) for simplicity.
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Likelihood Function
In the absence of screening:

𝐿No Screening = 𝑓𝑉det
(𝑣) ∫

𝑅
𝑃(𝑁 = 𝑛, 𝑊 = 𝑤|𝑉det = 𝑣, 𝑅 = 𝑟)𝑓𝑅|𝑉det=𝑣(𝑟) 𝑑𝑟

For a screened population:

𝐿Screen Detection ∝ 𝑃(𝐵0|𝑉 = 𝑣)𝑃(𝑉 = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤|𝐴)𝑃(𝐵𝑐|𝐴, 𝑉 = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤)

𝐿Symptomatic Detection ∝ 𝑃(𝑉det = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤|𝐴)𝑃(𝐵𝑐|𝐴, 𝑉det = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤)

12 of 23



Likelihood Function
In the absence of screening:

𝐿No Screening = 𝑓𝑉det
(𝑣) ∫

𝑅
𝑃(𝑁 = 𝑛, 𝑊 = 𝑤|𝑉det = 𝑣, 𝑅 = 𝑟)𝑓𝑅|𝑉det=𝑣(𝑟) 𝑑𝑟

For a screened population:

𝐿Screen Detection ∝ 𝑃 (𝐵0|𝑉 = 𝑣)𝑃 (𝑉 = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤|𝐴)𝑃(𝐵𝑐|𝐴, 𝑉 = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤)

𝐿Symptomatic Detection ∝ 𝑃(𝑉det = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤|𝐴)𝑃(𝐵𝑐|𝐴, 𝑉det = 𝑣, 𝑁 = 𝑛, 𝑊 = 𝑤)

12 of 23



Model-Based Predictions
After fitting the joint copula model we can obtain a variety of predictions. Among
others:

• Probability of having detected distant metastases at diagnosis of the primary
tumour given size of the tumour and number of affected lymph nodes;

• Probability of having latent/undiagnosed distant metastases given size of
the tumour and number of affected lymph nodes at diagnosis of the primary
tumour;

• Survival probability at any time 𝑤∗ > 0 for the event of distant metastasis,
conditional on characteristics observed at diagnosis and on being free of
distant metastasis at that time;

• More standard quantities such as tumour doubling time, etc.
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Application: Data
We analyse data from CAHRES, which consists of incident cases of
postmenopausal breast cancer recorded in a case-control setting:

• Women born and residing in Sweden,
• Aged 50 – 74,
• Diagnosed with an incident primary invasive breast cancer between October
1st 1993 and March 31st 1995.

Furthermore,

• This was linked to data from the Swedish Cancer Registry and the
Stockholm-Gotland Breast Cancer Registry, and

• An extension of the original study collected mammographic images and
screening histories from screening units and radiology departments.
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Application: Some Statistics
• 1581 women, of which:

• 1019 (64.4%) detected through screening
• 562 (35.6%) detected symptomatically

• Median tumour diameter at detection of 15 mm (I.Q.I. 10 – 22 mm);
• 1091 women (69.0%) had no affected lymph nodes at detection, 170 (10.8%)
had one, 91 (5.8%) had two, 229 women (14.4%) had three or more;

• One woman had detected distant metastasis at the time of diagnosis of the
primary tumour. During follow-up, 288 more women (18.2%) were diagnosed
with distant metastasis;

• Median follow-up time was 5.50 years (95% C.I.: 5.41 – 5.59 years);
• Kendall’s 𝜏 correlation between the lymph nodes and the times to distant
metastasis was -0.15 (if discretising time: -0.17).
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Application: Choice of the Copula Function

Frank Clayton AMH Independence

Log-likelihood -6,380.3 -6,417.6 -6,394.9 -6,443.4
AIC 12,780.6 12,855.1 12,809.8 12,904.9

Kendall’s 𝜏 -0.333 (-0.374 to -0.293) -0.091 -0.179 (-0.183 to -0.176) —

16 of 23



Application: Comparing Copulae
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Application: Time to Distant Metastasis Predictions

Copula: Frank Copula: Independence
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Application: Cured Fraction

• Marginally over the overall observed covariates distribution: 0.697 (95% C.I.:
0.658 to 0.736)

• Marginally over number of affected lymph nodes:
• Zero lymph nodes: 0.805 (0.772 to 0.839)
• One lymph node: 0.553 (0.500 to 0.605)
• Two lymph nodes: 0.479 (0.423 to 0.535)

This estimate is similar to that reported by Dal Maso et al. from the
EUROCARE-5 study: 0.66 for breast cancers diagnosed in 2000.
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Application: Microsimulation

Finally, we use the joint copula model to showcase its potential for
microsimulation purposes, as it can connect the latent natural history of a
tumour with the risk of future events.

For this purpose, we simulate 10 million tumours from the best fitting model (i.e.,
assuming a Frank copula) and we assess what the 5-years risk of distant
metastasis would be in the counterfactual scenario of early detection.

This quantity is likely affected by lead-time bias, but given that we know the
counterfactuals, we can provide a lead-time corrected estimate as well.
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Application: Early Detection
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Application: Detecting Smaller Cancers
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Wrap Up

1. We have introduced a joint, copula-based model for the latent growth of
breast cancer, detection, spread to the lymph nodes, and distant metastatic
spread.

2. We have shown that this model was able to capture relevant patterns in data.

3. We have demonstrated how a model of this kind could be used in
microsimulation studies of breast cancer.

4. The copula joint model is of course not perfect, but it provides solid building
blocks on which we can develop and extend upon, e.g., by directly modelling
cancer-specific death within a unified framework.

Thank you for listening!
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