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The Take-Home Messages

1. Continuous growth model can be used to model the unobserved natural
history of a tumour. They are more efficient than Markov models when
analysing several factors at once;

2. We introduce a model that relates the unobserved past natural history of
tumours to the risk of future outcomes, e.g. distant metastatic spread. To the
best of our knowledge, this is the first of its kind for breast cancer;

3. This is fundamentally important to assess new interventions and treatments
e.g. in a microsimulation framework.
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Breast Cancer

Breast cancer is when abnormal cells in the breast begin to grow
and divide in an uncontrolled way and eventually form a growth
(tumour).

It is the most common cancer in the UK, and the most common cancer among
women worldwide.
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Breast Cancer in Numbers

• 2.09 million cases worldwide (2018)

• ~55K cases in the UK (2016) and ~8K in Sweden (2017)

• 627K deaths from breast cancer worldwide, 5th most common cancer death
(2018)

• ~11K deaths from breast cancer in the UK (2015–2017) and ~1.4K in Sweden
(2017)

In most cases, breast cancer death is caused by metastases that have spread
throughout the body.

Data source: WHO, CRUK, Socialstyrelsen.

3 of 20



Traditional Statistical Approaches

Continuous tumour progression models:

• In the presence of a screening programme, e.g. Weedon-Fekjær et al. (2008,
2010);

• In the absence of a screening programme, e.g. Plevritis et al. (2007);

Multi-state Markov models with three states, e.g. in Duffy et al. (2001):

1. No detectable cancer;

2. Preclinical cancer (only detectable by screening);

3. Clinical symptomatic breast cancer.
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Aims of Our Work

Lots of researchers are looking into individualised screening and understanding
how interventions can be tailored to patients’ characteristics. The goal is to
improve future outcomes.

However, traditional prognostic models only use information that is observed at
diagnosis such as tumour size and detection mode.

Our aim is to develop a model that relates the unobserved natural history of the
tumour to future patients’ outcomes. For instance, here we study time to distant
metastasis.
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The Natural History of Tumours is Unobserved

Source: https://doi.org/10.1001/jama.2009.1498
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Screen-Detected and Symptomatic Tumours Are Different
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Continuous Tumour Growth Models

The tumour volume at time 𝑡 is assumed to grow exponentially:

𝑉 (𝑡, 𝑟) = 𝑉𝐶𝑒𝑙𝑙 exp(𝑡/𝑟), ∀ 𝑡 ≥ 0

The inverse growth rates 𝑟 are assumed to follow a Gamma distribution with
shape parameter 𝜏1 and inverse scale (e.g. rate) parameter 𝜏2:

𝑓𝑅(𝑟) = 𝜏𝜏1
2

Γ(𝜏1)𝑟𝜏1−1 exp(−𝜏2𝑟)
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Continuous Tumour Growth Models
On top of the growth functions, we assume that the probability of symptomatic
detection at time 𝑡𝑑𝑒𝑡 ≥ 𝑡 depends linearly on the size of the tumour (volume):

𝑃(𝑡𝑑𝑒𝑡 ∈ [𝑡, 𝑡 + 𝑑𝑡)|𝑡𝑑𝑒𝑡 ≥ 𝑡, 𝑅 = 𝑟) = 𝜂𝑉 (𝑡, 𝑟)𝑑𝑡 + 𝑂(𝑑𝑡)

Finally, screening sensitivity is assumed to follow a logistic function:

𝑆(𝑋|𝛽) = exp(𝑋𝛽)
1 + exp(𝑋𝛽)

𝑋 can include any covariates that we observe.
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Likelihood Function

A tumour growth model that brings these components together can be fitted
using maximum likelihood and any general-purpose optimiser (e.g. optim in R).
The likelihood function has closed-form, and it is based on:

1. The distribution of tumour sizes at screen detection

2. The distribution of tumour sizes at symptomatic detection

Both quantities are conditional on screening history; we skip the maths for
simplicity, but more details can be found in Abrahamsson and Humphreys (2016)
and Isheden and Humphreys (2019).
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Breast Cancer Spread

Source: https://www.nationalbreastcancer.org 11 of 20
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A Model for Successful Distant Metastatic Seeding
Metastatic seeding is assumed to follow an inhomogeneous Poisson process with
intensity function

𝜆(𝑡, 𝑟) = 𝜎∗𝐷(𝑡, 𝑟)𝑘𝐷′(𝑡, 𝑟)

where 𝐷(𝑡, 𝑟) represents the number of times that cancer cells have divided, and
𝐷′(𝑡, 𝑟) represents the rate of cell division.
The exponent 𝑘 (with 𝑘 ≥ −1) adds additional flexibility to the model.
We can identify a density and survival function based on this model, which
conveniently follows a Weibull distribution.
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A Model for Time to First Detected Distant Metastasis
Let 𝑊 be the time from detection of the primary tumour to diagnosis of the first
metastasis: 𝑤 = 𝑡 + 𝑡0 − 𝑡𝑑𝑒𝑡.

Hazard and survival functions, alongside the density function of 𝑊 , follow as:

𝑆(𝑤|𝑉 , 𝑅) = exp [−𝜎 (𝑤
𝑟 + log 𝑣𝑑𝑒𝑡

𝑉0
)

𝑘+1
]

ℎ(𝑤|𝑉 , 𝑅) = 𝜎
𝑟 (𝑘 + 1) (𝑤

𝑟 + log 𝑣𝑑𝑒𝑡
𝑉0

)
𝑘

𝑓𝑊 (𝑤|𝑉 , 𝑅) = ℎ(𝑤|𝑉 , 𝑅) × 𝑆(𝑤|𝑉 , 𝑅)
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Model Assumptions

• It takes the individual-specific time 𝑡0𝑖 for a metastasis to grow to a
detectable size;

• Metastatic spread is independent of the detection probability of the primary
tumour;

• Metastases growing to a detectable size before the diagnosis of the primary
tumour can be visible at diagnosis, but not detected beforehand;

• Metastatic seeding stops when the primary tumour is diagnosed;

• Finally, we rely on stable disease assumptions.
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Likelihood Function in the Absence of Screening
We can identify three types of observation that will contribute to the likelihood
function:

1. Observed events, i.e. metastases that appear after diagnosis of the primary
tumour (𝑤 ≥ 0). These observations contribute 𝑓𝑊 (⋅);

2. Left censored observations, i.e. individuals with detected metastases at the
time of diagnosis (𝑤 < 0). These observations contribute the probability of
having 1+ observed metastasis (derived from the inhomogeneous Poisson
process);

3. Right censored observations, i.e. individuals that do not develop metastases
before the end of follow-up. These observations will contribute the survival
probability.

15 of 20



Preliminary Analysis

• We use data from CAHRES, a case-control study with recruitment in Sweden
between 1993–1995;

• We extract 105 women with breast cancer detected symptomatically and with
no screening history;

• Median tumour diameter was 25 mm (IQI: 17–35 mm);

• Median follow-up was 5.67 years (95% C.I. 5.24–5.94);

• 45 women (43%) showed distant metastasis before the end of the study.

Then, we fit the model described in the previous slides and we predict the
probability of being free of distant metastasis over time.
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Marginal Predictions
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Conditional (On Tumour Size) Predictions
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Coming Next: Extending the Model to Screening Data
The model we described so far is only valid in the absence of screening: we need
to extend this to screening data.

The likelihood function with screening data is formulated as a conditional joint
probability:

𝑃(Size, Metastasis | Mode of detection, Screening History)

We need (again) stable disease assumptions, and we use a procedure similar to
that described in Abrahamsson and Humphreys (2016) and Isheden and
Humphreys (2019).
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Conclusions

1. Continuous growth model can be used to model the unobserved natural
history of a tumour. They are more efficient than Markov models when
analysing several factors at once;

2. We introduce a model that relates the unobserved past natural history of
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best of our knowledge, this is the first of its kind for breast cancer;

3. This is fundamentally important to assess new interventions and treatments
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