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Introduction



About me
Currently a 2nd year PhD student within the Biostatistics Research Group, Department of Health Sciences,
University of Leicester, UK. My PhD project covers:

Mixed eÜects survival models

Joint models for longitudinal and survival data

Use of joint models with healthcare "big data"

Supervisors: Dr. Michael Crowther, Prof. Keith Abrams

Previously:

1. BSc in Statistics and Computing Technologies, Università degli Studi di Padova, Italy (October 2012)

2. MSc in Biostatistics and Experimental Statistics, Università degli Studi di Milano-Bicocca, Italy (March 2015)

3. Karolinska Institutet, Stockholm, Sweden (August 2014 - October 2016)
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Survival data is commonly analysed by using
parametric survival models or the Cox model.

But:

1. Subjects may be exposed to diÜerent baseline
risk levels

2. Subjects may be clustered (clinical trials,
geographical clusters, paired organs, twin
studies, ...)

3. Subjects may experience repeated events
(infections, cancer recurrence, ...)

Example of clustered survival data:

Motivating examples
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Notation
 indexes the individuals, and  indexes the clusters

 is the true survival time,  is the censoring time, and  is the observed survival time

 is the event indicator variable: equals to  when the event of interest is observed, 
otherwise

i j

T C Y = min(T ,C)

d = I(T ≤ C) 1 0
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Notation
 indexes the individuals, and  indexes the clusters

 is the true survival time,  is the censoring time, and  is the observed survival time

 is the event indicator variable: equals to  when the event of interest is observed, 
otherwise

Survival function: 

Hazard function: 

Cumulative hazard function: 

i j

T C Y = min(T ,C)

d = I(T ≤ C) 1 0

S(t) = 1 − FT (t) = 1 − P(T ≤ t) = P(T > t)

h(t) = limΔt→0
P(t≤T≤t+Δt|T≥t)

Δt

S(t) = exp[− ∫ t

0
h(u) du]

H(t) = ∫ t

0
h(u) du = − logS(t)
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Survival models
The most popular survival model is the Cox model (Cox, 1972):

h(t) = h0(t) exp(Xβ)
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Survival models
The most popular survival model is the Cox model (Cox, 1972):

Alternatively, specify a form for :

1. Fully parametric distributions: exponential, Weibull, Gompertz, ...

2. Flexible spline-based formulations (Royston and Parmar, 2002; Liu et al., 2016)

Specifying  has advantages in terms of predictions and extrapolation.

h(t) = h0(t) exp(Xβ)

h0(t)

h0(t)
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Survival models with frailties



Univariate frailty survival models
Say we have survival data with heterogeneity. Heterogeneity is modelled by including a random eÜect in the
model, named frailty:

The model is conditional on the non-observed frailty eÜect .

Introducing covariates and inducing proportional hazards:

h(t|u) = uh0(t)

u

h(ti|Xi,u) = uh0(ti) exp(Xiβ)
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Univariate frailty survival models
Say we have survival data with heterogeneity. Heterogeneity is modelled by including a random eÜect in the
model, named frailty:

The model is conditional on the non-observed frailty eÜect .

Introducing covariates and inducing proportional hazards:

Individuals with  are more frail for reasons left unexplained by the covariates included in the model
and will have an increased hazard

Individuals with  are less frail and will survive longer (all else being equal)

h(t|u) = uh0(t)

u

h(ti|Xi,u) = uh0(ti) exp(Xiβ)

u > 1

u < 1
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Impact of frailty
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Shared frailty models
It is possible for the frailty eÜect  to be shared between clusters of study subjects:u

hij(t|uj) = ujh(t|Xij)
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Shared frailty models
It is possible for the frailty eÜect  to be shared between clusters of study subjects:
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Shared frailty models
It is possible for the frailty eÜect  to be shared between clusters of study subjects:

Analogously, introducting covariates and inducing proportional hazards:

The conditional survival function is:

u

hij(t|uj) = ujh(t|Xij)

hij(t|uj) = ujh0(t) exp(Xijβ)

Sij(t|uj) = Sij(t)
uj
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Shared frailty models
It is possible for the frailty eÜect  to be shared between clusters of study subjects:

Analogously, introducting covariates and inducing proportional hazards:

The conditional survival function is:

The corresponding marginal (i.e. population-level) survival function is:

with  the distribution of the frailty.

u

hij(t|uj) = ujh(t|Xij)

hij(t|uj) = ujh0(t) exp(Xijβ)

Sij(t|uj) = Sij(t)
uj

Sij(t) = ∫
U

Sij(t)
ujf(u) du,

f(u)
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Likelihood
The cluster-speciÚc contribution to the likelihood is obtained by calculating the cluster-speciÚc likelihood
conditional on the frailty, consequently integrating out the frailty itself:

with  the distribution of the frailty,  its domain, and  the cluster-speciÚc contribution to the
likelihood, conditional on the frailty:

with 

More details in Gutierrez (2002).

Lj = ∫
U

Lj(uj)f(u) du

f(u) U Lj(uj)

Lj(uj) = uDj

nj

∏
i=1

Sij(t)
ujhij(t)

dij ,

D = ∑
nj

i=1 dij
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Frailty distribution (1)
 is chosen to have a distribution  with expectation  and Únite variance .

 is interpretable as a measure of heterogeneity across the population in baseline risk: as  increases the
values of  are more dispersed, with greater heterogeneity in .

u f(u) E(u) = 1 V (u) = σ2

V (u) σ2

u uh0(t)
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Frailty distribution (1)
 is chosen to have a distribution  with expectation  and Únite variance .

 is interpretable as a measure of heterogeneity across the population in baseline risk: as  increases the
values of  are more dispersed, with greater heterogeneity in .

Assuming that the frailty  has a Gamma distribution with shape parameter  and scale parameter :

Choosing  and  the resulting distribution has expectation  and Únite variance . In these settings,
the model is analytically tractable:

u f(u) E(u) = 1 V (u) = σ2

V (u) σ2

u uh0(t)

u a b

f(u) =
ua−1 exp(−u/b)

Γ(a)ba

a = 1/θ b = θ 1 θ

S(t) = ∫
+∞

0
S(t)uf(u) du

= [1 − θ log(S(t))]−1/θ
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Frailty distribution (2)
Together with the Gamma distribution, the log-normal distribution is the most commonly used frailty
distribution.

The the resulting model has a frailty whose expectation is Únite, but it cannot be integrated out of the survival
function analytically to obtain the population survival function or the likelihood. Numerical methods to
approximate the integral are then required (more on that later).
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Frailty distribution (2)
Together with the Gamma distribution, the log-normal distribution is the most commonly used frailty
distribution.

The the resulting model has a frailty whose expectation is Únite, but it cannot be integrated out of the survival
function analytically to obtain the population survival function or the likelihood. Numerical methods to
approximate the integral are then required (more on that later).

Other possible distributions for the frailty distribution include: inverse Gaussian, inverse Gamma, positive stable
distribution (Hougaard, 1984).
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Mixed effects survival models



Mixed effects survival models
Extending proportional hazards survival models to accommodate mixed eÜects, using the mixed eÜects
modelling framework (Diggle, 2013; Crowther, 2014):

hij(t) = h0(t) exp(Xijβ + Zjbj)
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Mixed effects survival models
Extending proportional hazards survival models to accommodate mixed eÜects, using the mixed eÜects
modelling framework (Diggle, 2013; Crowther, 2014):

 is an unknown vector of Úxed eÜects

 is an unknown vector of random eÜects, with mean  and variance-covariance matrix 

 and  are design matrices for Úxed and random eÜects, respectively

hij(t) = h0(t) exp(Xijβ + Zjbj)

β

b E(b) = 0

var(b) = G

b ∼ N(0,G)

X Z
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Frailty models vs mixed effects models
If , then we have a random intercept model:Z = 1

hij(t) = h0(t) exp(Xijβ + bj)

14 of 45



Frailty models vs mixed effects models
If , then we have a random intercept model:Z = 1

hij(t) = h0(t) exp(Xijβ + bj)

uj = exp(bj)
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Frailty models vs mixed effects models
If , then we have a random intercept model:

Then we can write the random intercept model as:

This is a shared frailty model with a log-normal frailty distribution!

Z = 1

hij(t) = h0(t) exp(Xijβ + bj)

uj = exp(bj)

hij(t) = h0(t) exp(Xijβ) exp(bj)

= h0(t) exp(Xijβ)uj
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Computational challenges
The cluster-speciÚc likelihood of a mixed eÜects survival model has the form:

where

and

Equation * has no analytical form, and requires numerical integration to solve.

Lj = ∫
+∞

−∞
[ nj

∏
i=1

p(tij, dij|bj)]  p(bj) dbj (*)

p(tij, dij|bj) = h(tij|bj)
dij exp[−∫

tij

0
h(tij|bj)]

p(bj) ∼ N(0,G)
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Numerical integration
In numerical analysis, numerical integration constitutes a broad family of algorithms for calculating
the numerical value of a deÚnite integral [...].

Wikipedia
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Numerical integration
In numerical analysis, numerical integration constitutes a broad family of algorithms for calculating
the numerical value of a deÚnite integral [...].

Wikipedia

Say we have a deÚnite integral that we want to approximate to a given degree of accuracy:

A method commonly used is Gaussian quadrature, that is, an approximation of the deÚnite integral of a
function stated as a weighted sum of function values at speciÚed points within the domain of integration:

I will focus on Gauss-Hermite quadrature, which is used to approximate integrals over the inÚnite domain.

∫
b

a

f(x) dx

∫
+1

−1

f(x) dx = ∫
+1

−1

w(x)g(x) dx ≈
k

∑
i=1

wig(zi)
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Gauss-Hermite quadrature
Say we have an integral over the inÚnite domain:

For instance, recall equation *:

Using the normal density with mean  and variance  of  as weighting kernel , the integral can be
approximated as

with  and  weights and nodes from ordinary Gauss-Hermite quadrature. With clustered data, an appealing
option to increase accuracy is given by adaptive Gauss-Hermite quadrature (Pinheiro and Bates, 1995).

∫
+∞

−∞
f(x) dx

Lj = ∫
+∞

−∞
[ nj

∏
i=1

p(tij, dij|bj)]  p(bj) dbj

μ σ2 p(bj|θ) w(⋅)

∫
+∞

−∞
f(x) dx ≈

k

∑
i=1

g(√2σzi + μ)
wi

√π

wi zi
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Gauss-Hermite quadrature
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Gauss-Hermite quadrature
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Adaptive Gauss-Hermite quadrature
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Adaptive Gauss-Hermite quadrature
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Adaptive Gauss-Hermite quadrature
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Multidimensional quadrature
The quadrature example I just showed approximates an integral in a single dimension. Quadrature can be easily
extended to multidimensional integrals:

Problem: a -dimensional -points rule requires  function evalutations. Computationally expensive and
ineÝcient!

∫
X

∫
Y

f(x, y)p(x)p(y) dx dy ≈
ni∑
i=1

nj

∑
j=1

wiwjf(zi, zj)

d N N d
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Multidimensional quadrature
The quadrature example I just showed approximates an integral in a single dimension. Quadrature can be easily
extended to multidimensional integrals:

Problem: a -dimensional -points rule requires  function evalutations. Computationally expensive and
ineÝcient!

Solution: multivariate adaptive quadrature (Jäckel, 2005)

1. Rotating the matrix of location nodes, accounting for correlation between the  dimensions

2. Pruning the matrix of location nodes, removing those with extremely low weights that contribute very
little to the total integral value
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Multidimensional quadrature
The quadrature example I just showed approximates an integral in a single dimension. Quadrature can be easily
extended to multidimensional integrals:

Problem: a -dimensional -points rule requires  function evalutations. Computationally expensive and
ineÝcient!

Solution: multivariate adaptive quadrature (Jäckel, 2005)

1. Rotating the matrix of location nodes, accounting for correlation between the  dimensions

2. Pruning the matrix of location nodes, removing those with extremely low weights that contribute very
little to the total integral value

Alternative methods for numerical integration: Monte Carlo integration and importance sampling.

∫
X

∫
Y

f(x, y)p(x)p(y) dx dy ≈
ni∑
i=1

nj

∑
j=1

wiwjf(zi, zj)

d N N d

d
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Software



Software
There are many statistical packages available for Útting mixed eÜects models.

In R, among others:

coxme and survival
frailtypack
rstpm2
parfm, frailtyEM, ...

In Stata:

streg
stmixed and mestreg
megenreg

megenreg, acronym for Mixed EÜects GENeralised REGression models, is an extended framework in which it is
possible to model multiple outcomes of any type, potentially repeatedly measured, with any number of levels,
and with any number of random eÜects at each level (Crowther, 2017).
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Misspeci�cation in shared frailty models
When modelling survival data via mixed eÜects (and frailty) models there are a few assumptions to make:

1. Shape of the baseline hazard

2. Distribution of the frailty
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Misspeci�cation in shared frailty models
When modelling survival data via mixed eÜects (and frailty) models there are a few assumptions to make:

1. Shape of the baseline hazard

2. Distribution of the frailty

The shape of  could be:

unspeciÚed
fully parametric
Ûexible parametric (Royston and Parmar, 2002)
...

The distribution of the frailty ,  could be:

Gamma
log-normal
inverse Gamma
...

h0(⋅)

u uj
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A simulation study
Aims:

1. Does it matter how we model the baseline hazard?

2. Does it matter if we misspecify the frailty distribution?
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A simulation study
Aims:

1. Does it matter how we model the baseline hazard?

2. Does it matter if we misspecify the frailty distribution?

Outcomes:

Relative risk estimates

Absolute risk estimates

Measures of heterogeneity
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Shape of the baseline hazard

1. Simple parametric functions (exponential,
Weibull, Gompertz)

2. Complex Weibull mixture hazard functions with
turning points

Distribution of the shared frailty term, Gamma
or log-normal

Magnitude of the frailty variance

Sample size

Data-generating mechanisms
Simulating clustered survival data with a binary covariate (e.g. a treatment with two modalities) and frailty term
shared between individuals belonging to the same cluster.

Simulation factors:
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Models and performance measures
Models:

Semiparametric

Fully parametric (exponential, Weibull, Gompertz)

Flexible spline-based (3, 5, 7, 9 degrees of freedom, full or penalised likelihood; Royston and Parmar, 2002,
and Liu et al., 2016)

Performance measures:

Bias and coverage, percentage bias (when relevant)

Monte Carlo standard errors are computed as well
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Results: bias of regression coef�cient

Scenario: 50 clusters of 50 individuals each, with a true frailty variance of 1.25 26 of 45



Results: coverage of regression coef�cient

Scenario: 50 clusters of 50 individuals each, with a true frailty variance of 1.25 27 of 45



Results: bias of frailty variance

Scenario: 50 clusters of 50 individuals each, with a true frailty variance of 1.25 28 of 45



Results: coverage of frailty variance

Scenario: 50 clusters of 50 individuals each, with a true frailty variance of 1.25 29 of 45



Results: % bias of survival difference

Scenario: 50 clusters of 50 individuals each, with a true frailty variance of 1.25 30 of 45



Results: % bias of loss in life expectancy

Scenario: 50 clusters of 50 individuals each, with a true frailty variance of 1.25 31 of 45
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Kidney data
. webuse catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. describe
Contains data from http://www.stata-press.com/data/r15/catheter.dta
  obs:            76                          Kidney data, McGilchrist and Aisbett, Biometrics, 1991
 vars:             9                          1 May 2016 15:58
 size:         1,064
---------------------------------------------------------------------------------
              storage   display    value
variable name   type    format     label      variable label
---------------------------------------------------------------------------------
patient         byte    %7.0g                 Patient ID
time            int     %9.0g                 recurrence times in days
infect          byte    %4.0g                 1=infection; 0=right-censoring
age             float   %6.0g                 Patient age
female          byte    %6.0g                 Patient gender (0=male, 1=female)
[...]
---------------------------------------------------------------------------------

. summarize 

    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
     patient |         76        19.5    11.03872          1         38
        time |         76    97.68421    128.3424          2        562
      infect |         76    .7631579    .4279695          0          1
         age |         76    43.69737    14.73795         10         69
      female |         76    .7368421    .4432733          0          1
-------------+---------------------------------------------------------
[...]

. stset time, fail(infect) 32 of 45



Kidney data: Weibull regression model
. streg age female, dist(weibull)

[...]

Weibull PH regression

No. of subjects =           76                  Number of obs    =          76
No. of failures =           58
Time at risk    =         7424
                                                LR chi2(2)       =        8.05
Log likelihood  =   -103.44362                  Prob > chi2      =      0.0179

------------------------------------------------------------------------------
          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   1.004122   .0092317     0.45   0.655     .9861902     1.02238
      female |   .4361966   .1250348    -2.89   0.004     .2487066     .765028
       _cons |   .0206079   .0136819    -5.85   0.000     .0056093    .0757113
-------------+----------------------------------------------------------------
       /ln_p |  -.1028083   .0935237    -1.10   0.272    -.2861114    .0804949
-------------+----------------------------------------------------------------
           p |      .9023   .0843865                      .7511789    1.083823
         1/p |   1.108279   .1036504                      .9226596    1.331241
------------------------------------------------------------------------------
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Kidney data: adding a shared Gamma frailty
. streg age female, dist(weibull) frailty(gamma) shared(patient)

[...]

Weibull PH regression

Gamma shared frailty                            Number of obs     =         76
Group variable: patient                         Number of groups  =         38
                                                Obs per group:
No. of subjects =           76                                min =          2
No. of failures =           58                                avg =          2
Time at risk    =         7424                                max =          2

                                                LR chi2(2)        =     14.81
Log likelihood  =   -98.006931                  Prob > chi2       =    0.0006

------------------------------------------------------------------------------
          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   1.008569   .0132847     0.65   0.517      .982865    1.034946
      female |   .1470075   .0807275    -3.49   0.000     .0501086    .4312876
       _cons |   .0108047    .009282    -5.27   0.000     .0020061    .0581915
-------------+----------------------------------------------------------------
       /ln_p |   .2410369   .1336503     1.80   0.071    -.0209129    .5029866
    /lntheta |  -.4546298   .4747326    -0.96   0.338    -1.385089     .475829
-------------+----------------------------------------------------------------
           p |   1.272568   .1700791                      .9793043    1.653653
         1/p |   .7858127   .1050241                      .6047219    1.021133
       theta |   .6346829   .3013047                      .2503016    1.609348
------------------------------------------------------------------------------
LR test of theta=0: chibar2(01) = 10.87                Prob >= chibar2 = 0.000
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Kidney data: population baseline hazard
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Kidney data: conditional baseline hazard
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Kidney data: random intercept �exible
parametric model

. stmixed age female || patient:, dist(fpm) df(3)

[...]

Mixed effects survival regression                Number of obs.   =         76
Panel variable: patient                          Number of panels =         38

Log-likelihood = -94.86354

------------------------------------------------------------------------------
             | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
xb           |
         age |   1.007186   .0130094     0.55   0.579     .9820077    1.033009
      female |   .2309644   .1135461    -2.98   0.003      .088121    .6053556
       _rcs1 |   5.771724   1.389549     7.28   0.000     3.600625     9.25195
       _rcs2 |   1.425724   .2397905     2.11   0.035     1.025353     1.98243
       _rcs3 |   .8005217   .0762482    -2.34   0.019     .6641982    .9648248
       _cons |   .7059908   .4738904    -0.52   0.604      .189425    2.631243
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
patient: Identity            |
                   sd(_cons) |   .8000731   .2681015      .4148539    1.542994
------------------------------------------------------------------------------
  Survival submodel: Flexible parametric model
 Integration method: Adaptive Gauss-Hermite quadrature using 9 nodes
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Kidney data: hazard for a 45-years old female
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Kidney data: survival for a 45-years old female
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Kidney data: patient-speci�c baseline hazards
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IPD meta-analysis
. describe

Contains data
  obs:         7,500                          
 vars:             7                          
 size:       217,500                          
------------------------------------------------------------
              storage   display    value
variable name   type    format     label      variable label
------------------------------------------------------------
trial           float   %9.0g                 
trteffect       float   %9.0g                 
trt             float   %9.0g                 
trteffectsim    float   %9.0g                 
stime           double  %10.0g                
_survsim_rc     float   %9.0g                 
event           byte    %8.0g                 
------------------------------------------------------------

. summarize

    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
       trial |      7,500           8    4.320782          1         15
   trteffect |      7,500   -.3520517    1.009164   -2.04969   1.654998
         trt |      7,500       .4888    .4999079          0          1
trteffectsim |      7,500   -.1705032    .7221885   -2.04969   1.654998
       stime |      7,500    3.410759    1.690242   .0640601          5
-------------+---------------------------------------------------------
 _survsim_rc |      7,500      1.3072    1.487657          0          3
       event |      7,500    .5642667    .4958857          0          1
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IPD meta-analysis
. stmixed trt trialvar2-trialvar15 || trial: trt, nocons dist(fpm) df(5) gh(35)

[...]

Mixed effects survival regression                Number of obs.   =       7500
Panel variable: trial                            Number of panels =         15

Log-likelihood = -8088.0481

------------------------------------------------------------------------------
             | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
xb           |
         trt |   .6787073   .1896202    -1.39   0.165     .3925275    1.173532
   trialvar2 |   1.062548   .1200946     0.54   0.591     .8514152    1.326037
[...]
  trialvar15 |   1.071724   .1208388     0.61   0.539     .8592278    1.336772
       _rcs1 |   2.899527   .0450234    68.56   0.000     2.812612    2.989128
       _rcs2 |   1.253025   .0189086    14.95   0.000     1.216507    1.290638
       _rcs3 |   1.068354   .0097081     7.28   0.000     1.049495    1.087552
       _rcs4 |   .9849881   .0042694    -3.49   0.000     .9766557    .9933916
       _rcs5 |   .9852981   .0021529    -6.78   0.000     .9810876    .9895267
       _cons |   .4441625   .0367203    -9.82   0.000     .3777205    .5222919
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
trial: Identity              |
                     sd(trt) |   1.073018   .2006323      .7437893    1.547976
------------------------------------------------------------------------------
  Survival submodel: Flexible parametric model
 Integration method: Adaptive Gauss-Hermite quadrature using 35 nodes 42 of 45



IPD: trial speci�c baseline hazards
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IPD: survival probability
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I have introduced a family of models that:

1. can account for unmeasured heterogeneity
2. can be applied in many diÜerent settings

I introduced Gaussian quadrature as a way of obtaining approximations of intractable integrals

Bear in mind computational time and accuracy of numerical integration

It is important to correctly specify the model if using fully parametric distributions; Ûexible parametric
models are a great alternative, with or without mixed eÜects

Don't be afraid of using more complex, non standard models if you have complex data!
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Simulating IPD data
clear
set seed 2139875

* 15 trials
set obs 15
gen trial = _n

* trial specific treatment effect (log hazard ratio)
* from a normal distribution with mean -0.5, and sd 1
gen trteffect = rnormal(-0.5,1)

* 500 patients per trial
expand 500

* patient level treatment group indicator
gen trt = runiform() > 0.5

* patient specific treatment effect to use in simulations
gen trteffectsim = trt * trteffect

* simulate survival times from a mixture Weibull distribution, incorporating the random treatment effect 
* and administrative censoring at time t = 5
* if not already installed, install survsim from ssc:
*   ssc install survsim
survsim stime event, mixture lambdas(0.03 0.3) gammas(1.9 2.5) pmix(0.7) maxtime(5) covariates(trteffectsim 1)


